CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECTICEL RAISING THE STANDARDS</td>
<td>03</td>
</tr>
<tr>
<td>RECTICEL PIR THE ADVANTAGES</td>
<td>04</td>
</tr>
<tr>
<td>RECTICEL HIGH PERFORMANCE IN PITCHED ROOFS</td>
<td>05</td>
</tr>
<tr>
<td>EURATHANE® GP</td>
<td>06</td>
</tr>
<tr>
<td>EURATHANE® PL</td>
<td>07</td>
</tr>
<tr>
<td>TYPICAL INSTALLATION</td>
<td>10</td>
</tr>
<tr>
<td>BUILDING REGULATIONS</td>
<td>13</td>
</tr>
<tr>
<td>THE SUSTAINABLE SOLUTION</td>
<td>15</td>
</tr>
<tr>
<td>TECHNICAL SUPPORT</td>
<td>16</td>
</tr>
<tr>
<td>PRODUCT CHARACTERISTICS</td>
<td>18</td>
</tr>
</tbody>
</table>
Driven by a culture of innovation, technical competence and flair, Recticel Insulation is dedicated to raising the quality standards of insulation products in the UK.

Recticel Insulation, based at its state-of-the-art facility in Stoke-on-Trent, is part of the International Recticel Group, the European market leader in polyurethane products and one of the world’s largest producers of PIR insulation products.

At Recticel Insulation, quality is at the heart of everything we do. Striving for excellence in quality across the board, Recticel Insulation will raise product standards and fulfil customers’ requirements by providing unparalleled PIR insulation and fantastic service. Our mission is to demonstrate that, on all levels, Recticel Insulation will continue to deliver perfection in every way.

In addition, Recticel’s range of high performance PIR insulation materials benefit the environment as they help to reduce energy consumption, which contributes to lowering carbon dioxide emissions and reducing global warming.

Recticel’s products are designed and manufactured to result in the lowest environmental impact. Recticel’s Stoke-on-Trent site has attained ISO 14001 certification for its environmental management system.

Through using Recticel insulation you are guaranteed thermal conductivities as low as 0.022 W/mK, zero ozone depletion potential across the entire range, low global warming potential, and the reassurance of using a product that will repay the energy used in its manufacture many times over during its lifetime in use.

Visit recticelinsulation.co.uk to view detailed product guides, including U-value calculations, or contact Recticel Technical Services Department on 0800 0854079 or our Sales Department on 01782 590480 to discuss your requirements.

‘Our aim is to make an essential difference in the daily comfort of everyone’
RECTICEL PIR

THE ADVANTAGES

Not every brand of PIR thermal insulation is as easy to install.

Because we manufacture our boards to the most perfecting standards, installation is significantly easier. Precision cut straight edges, greater consistency in board size, high compression strength and a super-flat surface finish makes installations quicker, easier and more cost effective. So for a trouble-free, perfect build, use Recticel PIR insulation.

OPTIMUM STABILITY
Combined with correct facing, the raw material blends of our board provides stability in a variety of conditions – high/low temperatures, humidity, moisture, sunlight, UV. These blends have been perfected through vigorous testing, for optimal performance across roof, wall and floor insulation.

CUTTING TOLERANCES
Our cutting tolerance goes far beyond the industry standard and other brands, meaning every Recticel board that leaves our factory is consistent in length and width.

STRUCTURALLY BETTER
Our manufacturing process produces a homogeneous consistent volume of PIR foam to improve the board’s structural integrity, meaning that structural weaknesses are greatly reduced.

PERFECT APPEARANCE
Our PIR insulation board is the best-presented and packaged product on the market, ensuring you’re confident in its specification.

PRECISION FLATNESS
Our material blend, manufacturing parameters and processes at our facility in Stoke-on-Trent have resulted in a board that boasts perfect flatness for a precision finish without imperfections.

STRAIGHTEST EDGES
There’s nothing straighter than our PIR board, ensuring there are no gaps during installation and risks such as thermal bridging are minimised.

COMPRESSIVE STRENGTH
Manufactured to have a greater compressive strength than most, important for a more practical end result for applications that are under load.

GLOBAL PIONEER
As part of the International Recticel Group, Recticel Insulation is one of the world’s largest producers of PIR products. Excellence is ensured through continued investment and research into advancing insulation production processes.
Ensuring that a pitched roof offers the necessary weather protection and thermal performance is a vital part of any building project. It could be a new-build roof or the conversion of an existing structure to provide additional living accommodation – Eurothane GP, used in conjunction with our Eurothane PL plasterboard laminate, offers the versatility and performance to meet almost any solution. And because PIR is one of the thinnest insulation types on the market, our two products maximise the available space as part of the solution that’s right for you.
EUROTHANE GP board is a high performance PIR insulation, perfectly suited for multiple applications.

Product Overview
- High performance PIR insulation
- 0.022 W/mK lambda
- Manufactured using a blowing agent with zero ODP (Ozone Depletion Potential) and low GWP (Global Warming Potential)

Product Details

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Conductivity</td>
<td>0.022 W/mK</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>Exceeds 140kPa at yield</td>
</tr>
<tr>
<td>Moisture Vapour Resistance</td>
<td>Installed value of 100 MNs/g</td>
</tr>
<tr>
<td>Specific Heat Capacity</td>
<td>1.4kJ/kgK</td>
</tr>
<tr>
<td>Fire Performance</td>
<td>Class 1 BS 476 (Part 7)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>2400mm (l) x 1200mm (w)</td>
</tr>
<tr>
<td>Facing</td>
<td>Low emissivity multilayer coated aluminium on both sides</td>
</tr>
</tbody>
</table>

Introduction

EUROTHANE GP is a high performance PIR insulation that is lightweight and easy to cut, handle and install. It is available in a variety of thicknesses to suit precise specification requirements and ensure that thermal regulations are met or exceeded.

With EUROTHANE GP, you are specifying a board that:
- Has a low thermal conductivity (0.022 W/mK) providing an excellent thermal performance
- Is available in a range of thicknesses from 25mm – 160mm and in a board size of 2400mm x 1200mm
- Will not degrade or deteriorate if exposed to moisture therefore maintaining its thermal performance

Specification Clause

The insulation shall be Recticel EUROTHANE GP ____mm thick for use in pitched roof applications, manufactured in accordance with an ISO 9001 quality management system and an ISO 14001 environmental management system. It should comprise a rigid polyisocyanurate (PIR) core faced on both sides with a gas tight multilayer composite aluminium foil facing. The product should be manufactured using a blowing agent with zero ODP and low GWP, and be CE marked in accordance with BS EN 13165. EUROTHANE GP should be installed in accordance with Recticel’s recommendations.
EUROTHANE PL is a durable PIR-insulated plasterboard suitable for lining pitched roof constructions.

Product Overview
- Strong, durable PIR insulation
- 0.022 W/mK lambda (insulation)
- Manufactured using a blowing agent with zero ODP (Ozone Depletion Potential) and low GWP (Global Warming Potential)

- Lightweight Board
- Easy Handling and Installation
- ISO 9001 and ISO 14001
- Fire Performance

EUROTHANE PL Thermal Resistances

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Thickness (mm)</th>
<th>R-value (m²K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64238/001</td>
<td>37.5</td>
<td>1.15</td>
</tr>
<tr>
<td>64238/002</td>
<td>52.5</td>
<td>1.85</td>
</tr>
<tr>
<td>64238/004</td>
<td>62.5</td>
<td>2.30</td>
</tr>
<tr>
<td>64238/006</td>
<td>77.5</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Introduction

EUROTHANE PL is a durable PIR-insulated plasterboard suitable for mechanical fixing to the inside of pitched roof constructions. It is easy to cut, handle and install and, as a factory-bonded solution, provides optimum adhesion between plasterboard and insulation.

With EUROTHANE PL, you are specifying a board that:
- Has a low thermal conductivity (0.022 W/mK) providing an excellent thermal performance. The plasterboard offers a thermal conductivity of 0.21 W/mK.
- Has a reaction to fire classification Euroclass B-s1, d0.
- Is available in a range of thicknesses from 37.5mm to 77.5mm, and in a board size of 2400 x 1200mm.

Specification Clause

The insulation shall be EUROTHANE PL ___mm thick for use as an insulated dry-lining product, manufactured in accordance with an ISO 9001 quality management system and an ISO 14001 environmental management system. It should comprise a rigid polyisocyanurate (PIR) core faced on both sides with a gas tight kraft and aluminium multilayer facing, together with a factory bonded 12.5mm tapered edge plasterboard on the upper face. The product should be manufactured using a blowing agent with zero ODP and low GWP. EUROTHANE PL should be installed in accordance with Recticel’s recommendations.
THERMAL PERFORMANCE

Typical U-values (W/m²K) achieved in common pitched roof constructions

Insulation Over/Over And Between Rafters

- Tiles, battens, and ventilated counterbatten void
- Breather membrane
- Recticel Eurothane GP over rafters, stainless steel fixings, 6.7 per m²
- 50mm wide timber rafters, depth and centres as indicated
- Recticel Eurothane GP between rafters, as indicated
- Low-emissivity clear cavity, unvented
- Plasterboard finish

<table>
<thead>
<tr>
<th>Insulation over rafters (mm)</th>
<th>Insulation between rafters (mm)</th>
<th>Rafter Centres 400mm</th>
<th>Rafter Centres 600mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.33</td>
<td>0.34</td>
</tr>
<tr>
<td>50</td>
<td>n/a</td>
<td>0.33</td>
<td>0.34</td>
</tr>
<tr>
<td>75</td>
<td>n/a</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>90</td>
<td>n/a</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>100</td>
<td>n/a</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>110</td>
<td>n/a</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>120</td>
<td>n/a</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>140</td>
<td>n/a</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>150</td>
<td>n/a</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>min. 100mm deep rafters</td>
<td>min. 150mm deep rafters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>110</td>
<td>110</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>
THERMAL PERFORMANCE

Typical U-values (W/m²K) achieved in common pitched roof constructions

Insulation Between And Under Rafters

- Unventilated roof construction
- Tiles and battens
- Breather membrane
- Low-emissivity rafter cavity, unvented
- Recticel Eurothane GP, thickness indicated in first column, between rafters (spacing as indicated)
- Recticel Eurothane GP or Eurothane PL fixed below rafters
- VCL (incorporated within product if using Eurothane PL)
- Plasterboard finish (incorporated within product if using Eurothane PL)

Insulation Thickness under rafters

<table>
<thead>
<tr>
<th>Insulation thickness under rafters</th>
<th>25mm</th>
<th>40mm</th>
<th>50mm</th>
<th>60mm</th>
<th>75mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 cts</td>
<td>0.24</td>
<td>0.23</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>600 cts</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>800 cts</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>1000 mm</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>1100 mm</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>1200 mm</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>1300 mm</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>1400 mm</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>1500 mm</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
</tr>
</tbody>
</table>
TYPICAL INSTALLATION

EURATHANE® GP
EURATHANE® PL

GENERAL

Thermal Bridging

Linear thermal bridging is concerned with heat loss at junctions. To reduce heat loss it is necessary to ensure continuity of the insulation layer with adjacent building elements. This means careful detailing at junctions between elements to minimise the effects of thermal bridging.

For example, at gable ends continue the wall insulation 250mm above the height of the internal ceiling insulation and install a cavity tray over.

For further guidance on reducing thermal bridging, Accredited Construction Details (ACDs) and Enhanced Construction Details (ECDs) have been developed to assist the construction industry achieve the performance standards required to demonstrate compliance with the energy efficiency requirements of the building regulations.

It is recommended that any detailing and jointing of the boards achieves a draught free airtight envelope. Form tight joint details between boards at rafters and at ridges, valleys and hips.

Condensation Control

The specification of a vapour control layer (VCL) will vary depending on building use and the humidity of the internal environment. For all roof constructions it is recommended that a condensation risk analysis be performed in accordance with BS 5250 (Code of practice for control of condensation in buildings) in order to determine the requirement for a VCL.

A VCL typically acts as an airtightness membrane also, depending on the specific project requirements.

Breather Membranes

Should be installed in accordance with the specific manufacturer’s instructions and BBA certificate. Air gaps between insulation and membrane should be 25mm to 50mm generally. Some membranes can be laid directly on the insulation (i.e. insulation can fully fill the rafters), but require a counterbatten layer above the membrane to provide an air gap.

Fire Performance

Installed in accordance with this installation guide and good practice guidance, EUROTHANE GP will not prejudice the fire resistance of the roof and adds no significant fire load to the building. The product has a Class 1 fire rating, tested to BS 476-7: 1997.
INSTALLATION OVER RAFTERS

Warm Roof

This is a true warm roof construction that does not require ventilation, and maintains the roof structure at (or close to) the internal temperature. A breathable sarking membrane is installed over the insulation, allowing condensate to diffuse outwards and preventing moisture ingress.

As well as insulating above the rafters, insulation can be added between to avoid an excessively deep roof construction. The insulation layer over the rafters should be at least as thick as the layer between to avoid possible condensation issues.

Instructions

- A treated timber stop rail is secured at the base of the rafters at the eaves to provide a secure anchor for the counter battens
- EUROTHANE GP boards are laid with the long edges parallel to the rafters, tightly butted in a brick-bond pattern
- All board joints running eaves to ridge should be supported by rafters. Boards can be temporarily fixed with nails prior to counter battenning.
- Counter battens fixed over the insulation layer need to be appropriately sized to accept the helical nails being driven through to the rafters underneath. Secure the insulation boards using 38mm x 50mm counter battens down the line of each rafter. The lower end of the counter batten is nailed directly into the stop rail
- Nail the counter batten through the EUROTHANE GP boards into the rafter. Helical fixings are generally advisable to ensure resistance to wind loads. Fixing manufacturers provide calculations to work out the size and number of fixings required, and aid compliance with British Standards and Euro-codes
- Lay the breathable sarking membrane over the counter battens. The membrane should extend over the fascia to ensure drainage of water into the gutter, a continuous timber fillet should be used to support the edge of the membrane
- Secure the tiling battens, normally 50mm x 25mm, to the rafters by fixing through the insulation and the counter battens
- Tiles are fixed in accordance with manufacturers recommendations
- Where required, install the between rafter layer of EUROTHANE GP so that the boards are flush with the top of the rafters, with no air gap between the over rafter layer of insulation
- Secure timber battens to the lower edge of the rafters to support the EUROTHANE GP boards
- Finish the ceiling internally with plasterboard as required
INSTALLATION BETWEEN & UNDER RAFTERS

Unventilated Roof

This is a modern roof construction that potentially allows the full depth of the rafter to be used, depending on the requirements of the breathable sarking membrane manufacturer. Further insulation can be added under the rafters, head room permitting, which minimises the thermal bridge effect of the timber.

Ventilated Roof

Most common in roof refurbishment, this is a traditional cold roof construction, normally featuring Type 1F vapour resistant sarking felt, with ridge to eaves ventilation and minimum 50mm airspace between the sarking felt and insulation. Again, further insulation can be added under the rafters.

Instructions

- Secure minimum 25mm x 25mm battens flush with the top edge of the rafters to provide a stop, and to ensure the required space above the insulation for the drape of the breather membrane

- Complete the tiling, battening and felting in the normal manner using a BBA approved breathable sarking membrane

- Accurately cut the EUROTHANE GP boards to fit between the rafter timbers and position against the stop battens

- The stop battens should be positioned such that the bottom face of the EUROTHANE GP board is flush with the bottom of the rafters

- If required, an additional layer of EUROTHANE GP or EUROTHANE PL boards can be fixed below the rafters by means of plasterboard timber screws. Timber screws reduce the risk of nail popping, allow for the boards to be tightly fixed against the structure and reduce the ability of boards to flex

- Under rafter insulation boards should be lightly butted together and not forced into position

- The minimum distance from the screw to the edge of the board is 10mm. For horizontal or hand sawn edges a minimum distance of 15mm should be kept. The maximum distance between screws is 250mm

- Screw length should be calculated based on a minimum penetration of 25mm into the timber structure

- Screws should be tightened until the countersunk head is driven in just below the surface of the plasterboard. This allows a skimming over of the screw head
BUILDING REGULATIONS

ENGLAND

PART L 2013

U-values are part of wider assessment criteria to meet the requirements of Part L as a whole. Other factors taken into account include: airtightness, door and window U-values, the heating system, and thermal bridging.

‘Limiting U-values’ are the worst acceptable level of performance, but designing to these values is unlikely to result in compliance. The ‘notional building specification’ is a recipe approach that will ensure compliance if all standards are met. Regulatory compliance should be assessed through the appropriate SAP (for domestic) or SBEM (for non-domestic) calculation software.

NEW BUILD: L1A – new dwellings; L2A – new buildings other than dwellings

<table>
<thead>
<tr>
<th>Floor</th>
<th>External Wall</th>
<th>Flat Wall</th>
<th>Sloped Ceiling</th>
<th>Flat Ceiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1A</td>
<td>Notional dwelling</td>
<td>0.13</td>
<td>0.18</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Limiting Values</td>
<td>0.25</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>L2A</td>
<td>Notional dwelling</td>
<td>0.22</td>
<td>0.26</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Limiting Values</td>
<td>0.25</td>
<td>0.35</td>
<td>0.25</td>
</tr>
</tbody>
</table>

EXISTING PROPERTIES: L1B – existing dwellings; L2B – existing buildings other than dwellings

U-value requirements for existing buildings are unchanged from Part L 2010.

<table>
<thead>
<tr>
<th>Floor</th>
<th>External Wall</th>
<th>Flat Wall</th>
<th>Sloped Ceiling</th>
<th>Flat Ceiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1B & L2B</td>
<td>New element</td>
<td>0.22</td>
<td>0.28</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Retained element</td>
<td>0.25</td>
<td>0.30</td>
<td>0.18</td>
</tr>
</tbody>
</table>

WALES

PART L 2014

U-values are part of wider assessment criteria to meet the requirements of Part L as a whole. Other factors taken into account include: airtightness, door and window U-values, the heating system, and thermal bridging.

‘Limiting U-values’ are the worst acceptable level of performance, but designing to these values is unlikely to result in compliance. The ‘notional building specification’ is a recipe approach that will ensure compliance if all standards are met. Regulatory compliance should be assessed through the appropriate SAP (for domestic) or SBEM (for non-domestic) calculation software.

NEW BUILD: L1A – new dwellings; L2A – new buildings other than dwellings

<table>
<thead>
<tr>
<th>Floor</th>
<th>External Wall</th>
<th>Flat Wall</th>
<th>Sloped Ceiling</th>
<th>Flat Ceiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1A</td>
<td>Notional dwelling</td>
<td>0.15</td>
<td>0.18</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Limiting Values</td>
<td>0.18</td>
<td>0.21</td>
<td>0.15</td>
</tr>
<tr>
<td>L2A</td>
<td>Notional dwelling</td>
<td>0.22</td>
<td>0.26</td>
<td>0.18</td>
</tr>
</tbody>
</table>

EXISTING PROPERTIES: L1B – existing dwellings; L2B – existing buildings other than dwellings

*refers to buildings other than dwellings that are ‘domestic’ in character

<table>
<thead>
<tr>
<th>Floor</th>
<th>External Wall</th>
<th>Flat Wall</th>
<th>Sloped Ceiling</th>
<th>Flat Ceiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1B</td>
<td>New element</td>
<td>0.18</td>
<td>0.21</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Retained element</td>
<td>0.25</td>
<td>0.30</td>
<td>0.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Floor</th>
<th>External Wall</th>
<th>Flat Wall</th>
<th>Sloped Ceiling</th>
<th>Flat Ceiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2B - all elements</td>
<td>Domestic</td>
<td>0.18</td>
<td>0.21</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Limiting Values</td>
<td>0.22</td>
<td>0.26</td>
<td>0.18</td>
</tr>
</tbody>
</table>

*where insulation is installed internally or externally
SCOTLAND

SECTION 6 2015

U-values are part of wider assessment criteria to meet the requirements of Section 6 as a whole. The ‘notional building specification’ is a recipe approach that will ensure compliance if all standards are met. Regulatory compliance should be assessed through the appropriate SAP (for domestic) or SBEM (for non-domestic) calculation software.

DOMESTIC NEW BUILD

As well as U-values, the notional dwelling specifications for gas, LPG and oil fuel packages take into account: airtightness, door and window U-values, the heating system, and thermal bridging. They also include photovoltaics and waste water heat recovery. Specifying U-values therefore needs to be done in careful consideration with the entire dwelling package.

EXISTING DOMESTIC PROPERTIES

For extensions to existing dwellings, the required U-values for the new elements depend on the performance of the existing building:

A ‘A’ applies where the walls of the existing building have a U-value better than 0.70 and the roof better than 0.25, or will be upgraded to those levels as part of the works

A The higher standards in ‘B’ apply where the walls of the existing building have a U-value poorer than 0.70 and the roof is poorer than 0.25

Where existing domestic elements are to be altered or refurbished, the standards in ‘A’ apply.

NON-DOMESTIC BUILDINGS – NEW AND EXISTING

For all building types, early consultation with Local Authority Building Standards is advised.

Non-domestic new build standards are based on heating/ventilation specification (natural or mechanical) and have different limiting values depending on type of building (e.g. shell construction where future occupancy/use is uncertain).

For existing buildings, a degree of flexibility is available depending on the feasibility of achieving U-value targets (e.g. in listed buildings). Again, early discussion Local Authority Building Standards is recommended.
THE SUSTAINABLE SOLUTION

Specifying Recticel insulation is a real commitment to minimising energy consumption, harmful CO₂ emissions and impact on the environment. Using our products is one of the most effective ways to reduce energy consumption – in fact, after just eight months the energy they save far outweighs the energy used in their production. In addition, our manufacturing facility operates to an ISO 14001 certified Environmental Management System.

The BRE Green Guide

The 2008 Green Guide to Specification produced by the BRE gives Recticel Insulation products manufactured in the UK a summary rating of A.

Green Guide ratings are used to gain credits in BREEAM (BRE Environmental Assessment Method) for non-residential buildings, and under ‘Mat 4 – Insulation’ the first credit requires the building to have an Insulation Index of 2 or greater – only achievable if the weighted average rating of the insulation is A or A+.

Responsible Sourcing

The second BREEAM credit under that category is based on responsibly-sourced materials – at least 80% of the total insulation used in roofs, walls, ground floors and services must meet any of tier levels 1 to 6 in the BREEAM table of certification schemes.

Our Environmental Management System is certified under BS EN ISO 14001, and our raw materials come from companies with similarly-certified EMS (copies of all certificates are available for BREEAM assessments). This level of responsible sourcing meets tier level 6 in the BREEAM table.

Global Warming and Ozone Depletion

All Recticel Insulation products use CFC-and HCFC-free materials, and are manufactured using a blowing agent with a low GWP and zero ODP.

BREEAM

The Building Research Establishment’s Environmental Assessment Method is an internationally-recognised process for assessing any type of building, of any age, anywhere in the world against established environmental and sustainability benchmarks. Although heat loss and energy use have a significant influence on the calculation method, environmental performance is measured by awarding credits in a number of categories, each of which is given a different weighting.
TECHNICAL SUPPORT

To help you find the best insulation products for your project – and comply with building regulations – our dedicated technical team can provide you with U-value calculations, condensation risk analysis and advice on installation.

Our team is focused on helping specifiers in particular specialist areas, details of which can be found at recticelinsulation.co.uk:

Fabric First

Concentrate on getting a building’s fabric right and each element - whether a floor, wall or roof - will be well-built, thermally efficient and airtight, achieving the designed level of performance for the life of the building. At Recticel, we advocate ‘fabric first’ as the best way to reduce energy consumption.

Sharing aspects of the Passivhaus comfort standard, a fabric first approach concentrates on high levels of thermal performance and airtightness (including from doors and windows), and reduced thermal bridging. Air quality is also a vital part of the building specification to ensure occupant comfort and health, so the correct ventilation strategy needs to be considered - possibly requiring mechanical ventilation with heat recovery (MVHR). When it comes to the insulation specification, we’ll recommend the right thickness of PIR to meet your requirements in the most efficient manner possible.

The Performance Gap

While new buildings might meet thermal regulations on paper, the actual performance level once occupied can be well below expectations. Although we can advise on the theoretical performance of our products in particular building elements, we still rely on contractors and site supervisors to make sure they perform as intended – so we’re committed to providing more information and improving knowledge about the installation of our products.

Thermal Bridging Models

Linear thermal transmittance (or psi value) is a measure of heat loss at junctions. In order to minimise this, it is necessary to ensure continuity of the insulation layer across adjacent building elements. This means careful detailing of junctions between elements and openings to reduce thermal bridging. For example; between wall and roof, wall and floor, lintel and wall.

Why is it important to consider thermal bridging details?

Recent changes to building regulations have resulted in lower U-value requirements for the main construction elements. As thermal transmittance through these elements reduces, heat energy seeks to escape by the path of least resistance, normally through inadequately insulated junctions. Heat loss at junctions can account for up to 15% of a building’s total heat loss.

Accredited and Enhanced Construction Details (ACDs & ECDs) are one way of limiting heat loss through thermal bridging at junctions, reducing psi values and improving the overall fabric energy efficiency of the building. An additional benefit of minimising thermal bridging is reducing the risk of surface condensation and associated mildew at otherwise cold spots, and thereby improving occupant health.

Recticel Insulation’s range of thermal bridging details can assist designers with improved psi values for use in SAP calculations to ensure that carbon emissions and fabric energy efficiency targets of the latest building regulations are achieved, or even exceeded.
U-values

Recticel Insulation supports the accurate calculation of U-values for the construction industry. Calculations are issued under the Competent Person scheme administered by the BBA (British Board of Agrément).

All U-values are calculated by the Combined Method, in accordance with the conventions detailed in BS EN ISO 6946, BR 443, and other standards laid out by the BBA in their scheme guidance.

Calculations are provided free of charge to demonstrate the performance of Recticel products and compliance with building regulations. Calculation requests can be made in writing by email to technicalservices@recticel.com or by fax to 01782 590497.

Every Recticel U-value calculation is supplied with a Condensation Risk Analysis, and additional guidance is offered when required. Advice on condensation risk is given in accordance with BS EN ISO 13788 and BS 5250.

NBS Plus

RIBA NBS Plus gives architects access to a library of product information that can be consulted or copied directly into building specifications, supported by the RIBA Product Selector building product directory, both of which are widely used by industry professionals. Recticel products are listed within the RIBA product selector, making them accessible to all specifiers instantly.

Certification

All our products are manufactured to the harmonised European standard EN 13165, and are CE marked accordingly. Where stated, products have been certified by the British Board of Agrément (BBA). Our manufacturing facility operates to an ISO 9001 Quality System and ISO 14001 Environmental Management System. Declarations of Performance are available as required by the Construction Product Regulations.

RIBA CPD

Recticel Insulation is a member of the RIBA CPD Providers Network, which features manufacturers and suppliers who provide RIBA Continuing Professional Development to architects and specifiers.

We offer a range of RIBA CPD Assessed Material (some of which is part of the RIBA CPD Core Curriculum), including seminars (typically 45 minutes in duration, with 15 minutes available for questions and answers after) and CPD Articles that can be accessed directly on the RIBA CPD website.

Seminar bookings are available across the UK and can be requested online, via either the Recticel Insulation or RIBA CPD websites.
PRODUCT
CHARACTERISTICS

USING RECTICEL PIR INSULATION

Durability
Treated with appropriate care and installed correctly, Recticel Insulation products offer an indefinite service life and should not require maintenance. They are resistant to mould growth and will not rot.

PIR foam is not resistant to solvent-based products and should not be used in conjunction with them. Any boards that have come into contact with solvents or acids, or been damaged by such products, should be discarded.

PIR foam is a closed cell material, meaning water absorption is minimal. However, they should always be protected from the elements and never installed in exposed situations such as inverted flat roofs or in direct contact with the ground. Boards should be kept dry during installation and covered at the end of each day’s work on site. If boards get wet, they should be allowed to dry naturally prior to use.

Handling, Cutting and Storage
Recticel Insulation’s PIR boards are lightweight and inherently safe to handle. They should be treated with respect and maintained in the best possible condition during installation to ensure they perform as expected over the life of the building. They can be cut with a sharp knife or fine toothed saw.

Boards are supplied in polythene shrink wrap which is designed for short-term protection only. It is accepted that storing boards indoors is not always possible – when outdoor storage is necessary, boards should be stored clear of the ground, on a level surface, and under cover to protect them from prolonged exposure to moisture or mechanical damage.

Recticel Insulation products should not be installed when the temperature is at or below 5°C and falling.

Health and Safety
A comprehensive Product Information Data Sheet (PIDS) is available on request.

During cutting or machining, any dust is of nuisance value only. Large scale machining should be connected to a dust extraction system.

Foil-faced boards reflect light as well as heat, including ultraviolet light. Installation during bright weather may require UV eye protection, and a high SPF sun cream for bare skin. Foil facings can also become slippery when wet.

Avoid skin and eye contact with any sharp edges. Do not stand on or otherwise support your weight on boards unless the product is fully supported by a load-bearing surface.